Abstract
We introduce a concept of adjoint equation and Lyapunov regularity of a stochastic differential algebraic Equation (SDAE) of index 1. The notion of adjoint SDAE is introduced in a similar way as in the deterministic differential algebraic equation case. We prove a multiplicative ergodic theorem for the adjoint SDAE and the adjoint Lyapunov spectrum. Employing the notion of adjoint equation and Lyapunov spectrum of an SDAE, we are able to define Lyapunov regularity of SDAEs. Some properties and an example of a metal oxide semiconductor field-effect transistor ring oscillator under thermal noise are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastics An International Journal of Probability and Stochastic Processes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.