Abstract

Nonlinear model predictive control (NMPC) generally requires the solution of a non-convex dynamic optimization problem at each sampling instant under strict timing constraints, based on a set of differential equations that can often be stiff and/or that may include implicit algebraic equations. This paper provides a local convergence analysis for the recently proposed adjoint-based sequential quadratic programming (SQP) algorithm that is based on a block-structured variant of the two-sided rank-one (TR1) quasi-Newton update formula to efficiently compute Jacobian matrix approximations in a sparsity preserving fashion. A particularly efficient algorithm implementation is proposed in case an implicit integration scheme is used for discretization of the optimal control problem, in which matrix factorization and matrix-matrix operations can be avoided entirely. The convergence analysis results as well as the computational performance of the proposed optimization algorithm are illustrated for two simulation case studies of NMPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.