Abstract
We propose a method for an efficient optimization of experimental designs, using a combination of discrete adjoint computations, Taylor arithmetic and matrix calculus. Compared to the state of the art of using finite differences or the forward mode of automatic differentiation, our proposed approach leads to a reduction of the relative temporal complexity from linear to constant time in the number of control variables and measurement weights. We demonstrate that the advantageous complexity results are not only of theoretical nature, but lead to significant speedups in practice as well. With our implementation we are very close to the theoretical bound of the cheap gradient principle. We present one academic (spatially discretized heat equation) and two industrial application examples (biochemical process/Diesel-oxidation catalysis process) where we achieve speedups that range between 10 and 100. In addition to our core results, we also describe an efficient adjoint approach for the treatment of differential algebraic equations and present adjoint formulas for constrained least-squares problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.