Abstract
To study the nonlinear properties of complex natural phenomena, the evolution of the quantity of interest can be often represented by systems of coupled nonlinear stochastic differential equations (SDEs). These SDEs typically contain several parameters which have to be chosen carefully to match the experimental data and to validate the effectiveness of the model. In the present paper the calibration of these parameters is described by nonlinear SDE-constrained optimization problems. In the optimize-before-discretize setting a rigorous analysis is carried out to ensure the existence of optimal solutions and to derive necessary first-order optimality conditions. For the numerical solution a Monte–Carlo method is applied using parallelization strategies to compensate for the high computational time. In the numerical examples an Ornstein–Uhlenbeck and a stochastic Prandtl–Tomlinson bath model are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.