Abstract

In perpendicular recording system, the increase of track density is crucial to achieve ultrahigh areal density. At higher track densities, the adjacent-track interference (ATI) arises. In this work, ATI is studied by micromagnetic simulation. Two adjacent tracks are written successively. The track–track distance (TTD) and head–medium spacing are varied to analyze the write and read performance of these two tracks and to investigate the influence of ATI on recording performance. Simulation results indicate that when a track is written first, it is less vulnerable to ATI. ATI is stronger in a track with higher linear recording density. The head–medium spacing plays a significant role in the achievement of low ATI in perpendicular recording system. If the head–medium spacing is reduced to 5 nm, areal recording density above 540 Gb/in 2 could be realized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call