Abstract

An adjacent vertex-distinguishing edge coloring, or avd-coloring, of a graph G is a proper edge coloring of G such that no pair of adjacent vertices meets the same set of colors. Let $\operatorname {mad}(G)$ and Δ(G) denote the maximum average degree and the maximum degree of a graph G, respectively. In this paper, we prove that every graph G with Δ(G)?5 and $\operatorname{mad}(G) < 3-\frac {2}{\Delta}$ can be avd-colored with Δ(G)+1 colors. This completes a result of Wang and Wang (J. Comb. Optim. 19:471---485, 2010).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.