Abstract
The design of reliable, modern satellite communication networks, in which both frequency and orbital congestion are increasing, requires modeling of interference effects. The dominant sources of aggravation of nominal interference due to propagation phenomena are assumed to be differential rain attenuation from an adjacent satellite communication network operating at the same frequency and cross polarization due to rain and ice-crystals. A physical methodology to predict the statistics of the carrier-to-noise-plus-total-interference (CNIDR), which has already been applied to single and double-site systems, is extended to include triple-site diversity reception schemes. This method is based on a model of convective raincells model and the lognormal assumption for both the point rainfall statistics and slant path rain attenuation. The statistical properties of spatial inhomogeneity of rain attenuation over six satellite slant paths is firstly here presented. A set of simple, approximate formulas are presented which follow from a regression analysis on the previous theoretical results. The results serve to examine the influence of various parameters upon the total availability performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.