Abstract
Multi-pushdown systems are formal models of multi-threaded programs. As they are Turing powerful in their full generality, several decidable subclasses, constituting under-approximations of the original system, have been studied in the recent years. Ordered Multi-Pushdown Systems (OMPDSs) impose an order on the stacks and limit pop actions to the lowest non-empty stack. The control state reachability for OMPDSs is 2-ETIME-COMPLETE. We propose a restriction on OMPDSs, called Adjacent OMPDSs (AOMPDS), where values may be pushed only on the lowest non-empty stack or one of its two neighbours. We describe EXPTIME decision procedures for reachability and LTL model-checking and establish matching lower bounds. We demonstrate the utility of this model as an algorithmic tool via optimal reductions from other models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Foundations of Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.