Abstract

(1) Adipsin is an adipokine that may link increased fat mass and adipose tissue dysfunction to obesity-related cardiometabolic diseases. Here, we investigated whether adipsin serum concentrations and adipose tissue (AT) adipsin mRNA expression are related to parameters of AT function, obesity and type 2 diabetes (T2D). (2) Methods: A cohort of 637 individuals with a wide range of age and body weight (Age: 18–85 years; BMI: 19–70 kg/m2) with (n = 237) or without (n = 400) T2D was analyzed for serum adipsin concentrations by ELISA and visceral (VAT) and subcutaneous (SAT) adipsin mRNA expression by RT-PCR. (3) Results: Adipsin serum concentrations were significantly higher in patients with T2D compared to normoglycemic individuals. We found significant positive univariate relationships of adipsin serum concentrations with age (r = 0.282, p < 0.001), body weight (r = 0.264, p < 0.001), fasting plasma glucose (r = 0.136, p = 0.006) and leptin serum concentrations (r = 0.362, p < 0.001). Neither VAT nor SAT adipsin mRNA expression correlated with adipsin serum concentrations after adjusting for age, sex and BMI. Independent of T2D status, we found significantly higher adipsin expression in SAT compared to VAT (4) Conclusions: Our data suggest that adipsin serum concentrations are strongly related to obesity and age. However, neither circulating adipsin nor adipsin AT expression reflects parameters of impaired glucose or lipid metabolism in patients with obesity with or without T2D.

Highlights

  • Introduction distributed under the terms andObesity can be considered a slow motion pandemic, as its prevalence has been tripled worldwide since 1975 [1–3]

  • Analysis of 607 paired adipose tissue (AT) samples showed significantly higher adipsin mRNA expression in subcutaneous AT (SAT) compared to VAT (Figure 1A), regardless of the degree of obesity or type 2 diabetes (T2D) status (Figure 1)

  • The results showed a trend towards increased expression of VAT adipsin mRNA

Read more

Summary

Introduction

Introduction distributed under the terms andObesity can be considered a slow motion pandemic, as its prevalence has been tripled worldwide since 1975 [1–3]. Obesity increases the risk of cardiovascular, metabolic and multiple other comorbidities [4,5], but the individual risk for these diseases may vary and is at least partly related to distinct alterations in adipose tissue (AT), including its endocrine conditions of the Creative Commons. In genetically susceptible people, increased energy intake results in AT accumulation and is often accompanied by adipocyte hypertrophy [8,9], AT inflammation and heterogeneous body fat distribution [6,10]. Altered secretion of adipokines and changes in AT metabolites release may link obesity to AT dysfunction and obesity-related cardiometabolic diseases [4,6,7,11,12]. In the past two decades, hundreds of adipokines have been discovered [13]. For many of these adipokines, we only have an incomplete understanding about their mechanism of action, regulation of expression and clinical relevance [14]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call