Abstract

Phosphopantetheine is a key structural element in biological acyl transfer reactions found embedded within coenzyme A (CoA). Phosphopantothenoylcysteine synthetase (PPCS) is responsible for installing a cysteamine group within phosphopantetheine. Therefore, it holds considerable potential as a drug target for developing new antimicrobials. In this study, we adapted a biochemical assay specific for bacterial PPCS to screen for inhibitors of CoA biosynthesis against a library of marine microbial derived natural product extracts (NPEs). Analysis of the NPE derived from Streptomyces blancoensis led to the isolation of novel antibiotics (10–12, and 14) from the adipostatin class of molecules. The most potent molecule (10) displayed in vitro activity with IC50 = 0.93 µM, against S. pneumoniae PPCS. The whole cell antimicrobial assay against isolated molecules demonstrated their ability to penetrate bacterial cells and inhibit clinically relevant pathogenic strains. This establishes the validity of PPCS as a pertinent drug target, and the value of NPEs to provide new antibiotics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.