Abstract

The effect of fat mass on bone mineral content (BMC) in children is not clear, particularly when considering a diverse population. Ancestral genetic admixture may be an approach to accurately identify population differences in BMC. Our objective was to evaluate the relationships between self-reported race/ethnicity, genetic admixture, and fat mass on BMC in a multiethnic sample of children (n = 270), taking into account dietary and physical activity variables. Ancestral genetic admixture was estimated using 140 ancestry informative markers, body composition by dual-energy X-ray absorptiometry, diet by 24-h recall, and physical activity by accelerometry. Multiple linear regression examined the relationships between race/ethnicity or genetic admixture and percent fat on BMC. Additional analyses were conducted to examine the relationship between race/ethnicity or genetic admixture and BMC stratified by body fat percentage cutpoints. In regression models, there was no association between race/ethnicity and BMC. In contrast, African admixture (AFADM) was positively associated with BMC, American Indian admixture (AMINADM) was inversely associated with BMC, and there was no association between European admixture (EUADM) and BMC. When stratified by percent fat group, high body fat percentage was inversely associated with BMC with EUADM and AMINADM (P = 0.03 and P = 0.02, respectively) and positively associated with AFADM (P < 0.001). Diet and physical activity were not related to BMC in this sample. Our findings suggest that genetic admixture and percent body fat, but not race/ethnicity, diet, or physical activity, influence BMC in our sample of peripubertal children. Further, there is a differential impact of percent fat on BMC that may be mediated by genetic admixture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call