Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by skin and lung fibrosis. Although SSc has a high mortality risk, an effective treatment for the disease has not been established yet. Mesenchymal stromal/stem cells (MSCs) are multipotential nonhematopoietic progenitor cells that have the ability to regulate immune responses. Adipose-derived stromal/stem cells (ASCs), one of the types of MSCs, have the advantage of accessibility and potent immunomodulatory effects when compared with other MSCs, such as bone marrow-derived MSCs. This study aimed to investigate the antifibrotic effect of ASCs in scleroderma mouse models, including bleomycin-induced scleroderma and sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) models. ASCs were intravenously administered to a bleomycin-induced scleroderma or Scl-cGVHD model on day 0. We compared the skin and lung fibrosis of scleroderma model mice between the ASC-treated group and control group. Administration of ASCs attenuated the skin and lung fibrosis of bleomycin-induced scleroderma and Scl-cGVHD model mice compared to that in the control mice. Immunohistochemical staining showed that ASCs suppressed the infiltration of CD4+ , CD8+ T cells and macrophages into the dermis of bleomycin model mice compared to that in control mice. In addition, ASCs attenuated the messenger RNA expression of collagen and fibrogenic cytokines, such as interleukin (IL)-6 and IL-13, in the skin of bleomycin model mice. ASCs also reduced the frequency of fibrogenic cytokine-producing CD4+ T cells and effector B cells in the spleen of bleomycin model mice. ASCs could prove to be a potential therapeutic agent for use in patients with SSc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.