Abstract

BackgroundFatty acid (FA) composition and desaturase indices are associated with obesity and related metabolic conditions. However, it is unclear to what extent desaturase activity in different lipid fractions contribute to obesity susceptibility. Our aim was to test whether desaturase activity and FA composition are linked to an obese phenotype in rats that are either obesity prone (OP) or resistant (OR) on a high-fat diet (HFD).MethodsTwo groups of Sprague–Dawley rats were given ad libitum (AL-HFD) or calorically restricted (HFD-paired; pair fed to calories consumed by chow-fed rats) access to a HFD. The AL-HFD group was categorized into OP and OR sub-groups based on weight gain over 5 weeks. Five different lipid fractions were examined in OP and OR rats with regard to proportions of essential and very long-chain polyunsaturated FAs: linoleic acid (LA), alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid and the stearoyl-CoA desaturase 1 (SCD-1) product 16:1n-7. FA ratios were used to estimate activities of the delta-5-desaturase (20:4n-6/20:3n-6), delta-6-desaturase (18:3n-6/18:2n-6), stearoyl-CoA desaturase 1 (SCD-1; 16:1n-7/16:0, SCD-16 and 18:1n-9/18:0, SCD-18), de novo lipogenesis (16:0/18:2n-6) and FA elongation (18:0/16:0). Fasting insulin, glucose, adiponectin and leptin concentrations were measured in plasma.ResultsAfter AL-HFD access, OP rats had a significantly higher SCD-16 index and 16:1n-7 proportion, but a significantly lower LA proportion, in subcutaneous adipose tissue (SAT) triacylglycerols, as well as significantly higher insulin and leptin concentrations, compared with OR rats. No differences were found between the two phenotypes in liver (phospholipids; triacylglycerols) or plasma (cholesterol esters; phospholipids) lipid fractions or for plasma glucose or adiponectin concentrations. For the desaturase indices of the HFD-paired rats, the only significant differences compared with the OP or OR rats were higher SCD-16 and SCD-18 indices in SAT triacylglycerols in OP compared with HFD-paired rats.ConclusionThe higher SCD-16 may reflect higher SCD-1 activity in SAT, which in combination with lower LA proportions may reflect higher insulin resistance and changes in SAT independent of other lipid fractions. Whether a lower SCD-16 index protects against diet-induced obesity is an interesting possibility that warrants further investigation.

Highlights

  • Fatty acid (FA) composition and desaturase indices are associated with obesity and related metabolic conditions

  • Desaturase indices in OP, OR and high-fat diet (HFD)-paired rats Comparing the desaturase indices of OP and OR, we found a significant difference for Stearoyl-CoA desaturase (SCD)-16 in subcutaneous adipose tissue triacylglycerols (SAT-TG), with OP rats having a higher index than OR rats (P < 0.01)

  • We discovered a significant difference between OP and OR in the stearoyl-CoA desaturase 1 (SCD-1) index SCD-16 and the proportion of linoleic acid in subcutaneous adipose tissue, paralleled by hormonal changes indicating an insulin resistant state

Read more

Summary

Introduction

Fatty acid (FA) composition and desaturase indices are associated with obesity and related metabolic conditions. Just as humans differ in their susceptibility to diet-induced weight gain, individual animals within certain rodent strains show different responses to excess energy intake [4,5,6]. On an ad libitum high-fat diet (HFD), the outbred Sprague–Dawley strain of rats can be divided into obesity-prone (OP) and obesity-resistant (OR) phenotypes to model human diet-induced obesity (DIO) [7,8]. This two-phenotype model can be useful for elucidating mechanisms that drive DIO, and to identify physiological and biochemical differences between the two groups

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call