Abstract

Adipose tissue insulin resistance is one of the pathophysiological components of type 2 diabetes. Herein we investigated: 1) adipose insulin resistance index (Adipose-IR) (calculated as fasting insulin × free fatty acids [FFAs]) in youth across the spectrum of adiposity from normal weight to obese and the spectrum from normal glucose tolerance (NGT) to impaired glucose tolerance (IGT) to type 2 diabetes, 2) the relationship of Adipose-IR with physical and metabolic characteristics, and 3) the predictive power of Adipose-IR for determining dysglycemia in youth. A total of 205 youth had fasting glucose, insulin, FFA, Adipose-IR, body composition, visceral adipose tissue (VAT), leptin, and adiponectin evaluated. Adipose-IR was 2.2-fold higher in obese NGT, 4.3-fold higher in IGT, and 4.6-fold higher in type 2 diabetes compared with that in normal-weight peers (all P < 0.05). Females with dysglycemia (IGT and type 2 diabetes) had higher Adipose-IR than their male counterparts (P < 0.001). Adipose-IR correlated positively with total body and visceral adiposity, fasting glucose, HOMA-IR, and leptin and negatively with adiponectin. Receiver operating characteristic curve analysis yielded an optimal cutoff for Adipose-IR of 9.3 μU/mL × mmol/L for determining dysglycemia with 80% predictive power. Adipose-IR is a simple surrogate estimate that reflects pathophysiological alterations in adipose tissue insulin sensitivity in youth, with progressive deterioration from normal weight to obese and from NGT to IGT to type 2 diabetes. Adipose-IR can be applied in large-scale epidemiological/observational studies of the natural history of youth-onset type 2 diabetes and its progression or reversal with intervention strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call