Abstract

Obesity is a metabolic state generated by the expansion of adipose tissue. Adipose tissue expansion depends on the interplay between hyperplasia and hypertrophy, and is mainly regulated by a complex interaction between genetics and excess energy intake. However, the genetic regulation of adipose tissue expansion is yet to be fully understood. Obesity can be divided into common multifactorial/polygenic obesity and monogenic obesity, non-syndromic and syndromic. Several genes related to obesity were found through studies of monogenic non-syndromic obesity models. However, syndromic obesity, characterized by additional features other than obesity, suggesting a more global role of the mutant genes related to the syndrome and, thus, an additional peripheral influence on the development of obesity, were hardly studied to date in this regard. This review summarizes present knowledge regarding the hyperplasia and hypertrophy of adipocytes in common obesity. Additionally, we highlight the scarce research on syndromic obesity as a model for studying adipocyte hyperplasia and hypertrophy, focusing on Bardet-Biedl syndrome (BBS). BBS obesity involves central and peripheral mechanisms, with molecular and mechanistic alternation in adipocyte hyperplasia and hypertrophy. Thus, we argue that using syndromic obesity models, such as BBS, can further advance our knowledge regarding peripheral adipocyte regulation in obesity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call