Abstract
Adipose tissue (AT) helps to regulate body fat partitioning and systemic lipid/glucose metabolism. We have recently reported lipid/glucose metabolism abnormalities and increased liver triglyceride content in an AT-selective transgenic model overexpressing ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1), the AdiposeENPP1-Tg mouse. The aim of the study was to test the translational hypothesis that AT-ENPP1 overexpression associates with AT dysfunction (changes in AT gene expression, plasma fatty acid, and adipokine levels), increased liver triglyceride deposition, and systemic insulin resistance in humans. A total of 134 young normoglycemic men and women were subjected to body composition studies, hyperinsulinemic-euglycemic clamps, and AT needle biopsy. Twenty men also had liver/muscle nuclear magnetic resonance spectroscopy. Predetermined measures included AT expression of ENPP1 and other lipid metabolism/inflammation genes, plasma adipokines, and nonesterified fatty acid (NEFA) levels, liver/muscle triglyceride content, and the systemic glucose disposal rate. After statistical adjustment for body fat content, increasing AT-ENPP1 was associated with up-regulation of genes involved in NEFA metabolism and inflammation, increased postabsorptive NEFA levels, decreased plasma adiponectin, increased liver triglyceride content, and systemic insulin resistance in men. In women, there were no changes in plasma adiponectin, NEFAs, or glucose disposal rate associated with increasing AT-ENPP1, despite increased expression of lipid metabolism and inflammation genes in AT. Increased AT-ENPP1 is associated with AT dysfunction, increased liver triglyceride deposition, and systemic insulin resistance in young normoglycemic men. These findings are concordant with the AdiposeENPP1-Tg phenotype and identify a potential target of therapy for health complications of AT dysfunction, including type 2 diabetes and cardiovascular disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Clinical Endocrinology & Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.