Abstract

Steroidogenic factor 1 (SF-1)/adrenal 4 binding protein is an essential nuclear receptor for steroidogenesis, as well as for adrenal and gonadal gland development. We have previously clarified that adenovirus-mediated forced expression of SF-1 can transform long-term cultured mouse bone marrow mesenchymal cells (BMCs) into ACTH-responsive steroidogenic cells. In the present study, we extended this work to adipose tissue-derived mesenchymal cells (AMCs) and compared its steroidogenic capacity with those of BMCs prepared from the identical mouse. Several cell surface markers, including potential mesenchymal cell markers, were identical in both cell types, and, as expected, forced expression of SF-1 caused AMCs to be transformed into ACTH-responsive steroidogenic cells. However, more elaborate studies revealed that the steroidogenic property of AMCs was rather different from that of BMCs, especially in steroidogenic lineage. In response to increased SF-1 expression and/or treatment with retinoic acid, AMCs were much more prone to produce adrenal steroid, corticosterone rather than gonadal steroid, testosterone, whereas the contrary was evident in BMCs. Such marked differences in steroidogenic profiles between AMCs and BMCs were also evident by the changes of steroidogenic enzymes. These novel results suggest a promising utility of AMCs for autologous cell regeneration therapy for patients with steroid insufficiency and also a necessity for appropriate tissue selection in preparing mesenchymal stem cells according to the aim. The different steroidogenic potency of AMCs or BMCs might provide a good model for the clarification of the mechanism of tissue- or cell-specific adrenal and gonadal steroidogenic cell differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.