Abstract
It is becoming increasingly evident that mesenchymal stem/stromal cells are recruited by cancer cells from nearby endogenous host stroma and promote events such as tumor proliferation, angiogenesis, invasion, and metastasis, as well as mediate therapeutic resistance. Consequently, understanding the regulatory mechanisms of ASCs that influence the tumor microenvironment may provide an avenue for further treatment. To understand the role of the ASC secretome in breast cancer cell proliferation, death, and phenotype alteration, adipose-derived stem cell-conditioned medium (mASC) was used to cultivate MCF-7 and MDA-MB-231 cells. These breast cancer cells in mASC showed a shorter doubling time, higher frequency of EdU positivity, and higher levels of phosphorylated histone 3. In addition, increased expression of cyclin B1 was observed, suggesting that proliferation was induced. The mASC was also able to increase apoptosis in MCF-7 cells, which was confirmed by caspase-7 activation. The number of tumor-initiating cells (CD44+ CD24-/low) and migration capacity were increased in cells cultivated in mASC. These data collectively suggest that ASC-conditioned medium can induce selective pressure by increasing cell proliferation, giving rise to a more aggressive phenotype in MCF-7 and MDA-MB-231 cells. Our study provides a foundation for further elucidation of the precise mechanism underlying ASCs in breast cancer cells and the modulation of ASCs in potential therapeutic uses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.