Abstract

Recent development in stem cell isolation methods and expansion under laboratory conditions create an opportunity to use those aforementioned cells in tissue engineering and regenerative medicine. Particular attention is drawn towards mesenchymal stem cells (MSCs) being multipotent progenitors exhibiting several unique characteristics, including high proliferation potential, self-renewal abilities and multilineage differentiation into cells of mesodermal and non-mesodermal origin. High abundance of MSCs found in adipose tissue makes it a very attractive source of adult stem cells for further use in regenerative medicine applications. Despite immunomodulating properties of adipose-derived stem cells (ASCs) and a secretion of a wide variety of paracrine factors that facilitate tissue regeneration, effectiveness of stem cell therapy was not supported by the results of clinical trials. Lack of a single, universal stem cell marker, patient-to-patient variability, heterogeneity of ASC population combined with multiple widely different protocols of cell isolation and expansion hinder the ability to precisely identify and analyze biological properties of stem cells. The above issues contribute to conflicting data reported in literature. We will review the comprehensive information concerning characteristic features of ASCs. We will also review the regenerative potential and clinical application based on various clinical trials.

Highlights

  • In the past, adipose tissue was considered only a passive energy storage

  • High abundance of mesenchymal stem cells (MSCs) found in adipose tissue makes it a very attractive source of adult stem cells for further use in regenerative medicine applications

  • Despite immunomodulating properties of adipose-derived stem cells (ASCs) and a secretion of a wide variety of paracrine factors that facilitate tissue regeneration, effectiveness of stem cell therapy was not supported by the results of clinical trials

Read more

Summary

Introduction

Adipose tissue was considered only a passive energy storage. Since the mid-80’s of the last century, when its participation in the metabolism of sex hormones was confirmed, adipose tissue has become an important endocrine organ that controls metabolism, immunity and satiety (Seo et al 2004). Despite immunomodulating properties of adipose-derived stem cells (ASCs) and a secretion of a wide variety of paracrine factors that facilitate tissue regeneration, effectiveness of stem cell therapy was not supported by the results of clinical trials. The method of adipose tissue collection, for the purpose of stem cell isolation, raises a number of controversies.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call