Abstract

Secondary lymphedema is often observed in postmalignancy treatment of the breast and the gynecologic organs, but effective therapies have not been established in chronic cases even with advanced physiologic operations. Currently, reconstructive surgery with novel approaches has been attempted. The hindlimbs of 10-week-old male C57BL/6J mice, after 30-Gy x-irradiation, surgical lymph node dissection, and 5-mm gap creation, were divided into four groups, with vascularized lymph node transfer abdominal flap and 1.0 × 10 adipose-derived stem cells. Lymphatic flow assessment, a water-displacement plethysmometer paw volumetry test, tissue quantification of lymphatic vessels, and functional analysis of lymphatic vessels and nodes were performed. Photodynamic Eye images, using indocyanine green fluorescence, demonstrated immediate staining in subiliac lymph nodes, and linear pattern imaging of the proximal region was observed with the combined treatment of adipose-derived stem cells and vascularized lymph node transfer. Both percentage improvement and percentage deterioration with the combined treatment of adipose-derived stem cells and vascularized lymph node transfer were significantly better than with other treatments (p < 0.05). The numbers of lymphatic vessels with LYVE-1 immunoreactivity significantly increased in mice treated with adipose-derived stem cells (p < 0.05), and B16 melanoma cells were metastasized in groups treated with vascularized lymph node transfers by day 28. Adipose-derived stem cells increase the number of lymphatic vessels and vascularized lymph node transfers induce the lymphatic flow drainage to the circulatory system. Combined adipose-derived stem cell and vascularized lymph node transfer treatment in secondary lymphedema may effectively decrease edema volume and restore lymphatic function by lymphangiogenesis and the lymphatic-to-venous circulation route.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.