Abstract
The authors' previous proteome study revealed that haptoglobin was involved in adipose-derived stem cell modulation of allotransplant survival and T-cell regulation to induce immune tolerance. This study investigated whether adipose-derived stem cells could modulate T-cell regulation through haptoglobin and the downstream heme oxgenase-1 pathway in vitro. Splenocytes were isolated from Lewis rat spleens and then CD3 T cells were purified using anti-CD3 beads. Adipose-derived stem cells were harvested from Lewis rats and co-cultured with the T cells. After Transwell co-culture at different periods, the authors analyzed cell proliferation with a bromodeoxyuridine assay. Cell extractions and culture supernatants were collected for further analysis. Heme oxgenase-1 and related protein expression levels from the adipose-derived stem cells and T cells were detected using Western blotting. The related cytokine expression levels were analyzed with enzyme-linked immunosorbent assay kits. Flow cytometry was used to detect the regulatory T-cell proportion. The adipose-derived stem cells significantly suppressed T-cell proliferation. The regulatory T-cell percentages were significantly increased in the adipose-derived stem cells that were co-cultured with T cells compared with T cells alone without adipose-derived stem cell co-culture. Heme oxgenase-1 expression in concanavalin A-stimulated T cells that were co-cultured with adipose-derived stem cells revealed a significant increase compared with concanavalin A-stimulated T cells alone. Cytokine assays of the culture supernatants revealed that transforming growth factor-β and interleukin-10 were significantly increased and interferon-γ was statistically decreased in the adipose-derived stem cell-co-cultured T-cell group compared with other groups; however, blockade with a heme oxgenase-1 inhibitor (zinc protoporphyrin IX) protected against these changes. Adipose-derived stem cells modulate T-cell proliferation and enhance regulatory T-cell expression, and this correlated with heme oxgenase-1 expression and related cytokine pathway changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.