Abstract

OBJECTIVEFatty acid (FA) metabolism is tightly regulated across several tissues and impacts insulin sensitivity. CD36 facilitates cellular FA uptake, and CD36 genetic variants associate with lipid abnormalities and susceptibility to metabolic syndrome. The objective of this study was to gain insight regarding the in vivo metabolic influence of muscle and adipose tissue CD36. For this, we determined the relationships between CD36 alternative transcripts, which can reflect tissue-specific CD36 regulation, and measures of FA metabolism and insulin resistance.RESEARCH DESIGN AND METHODSThe relative abundance of alternative CD36 transcripts in adipose tissue and skeletal muscle from 53 nondiabetic obese subjects was measured and related to insulin sensitivity and FA metabolism assessed by hyperinsulinemic–euglycemic clamps and isotopic tracers for glucose and FA.RESULTSTranscript 1C, one of two major transcripts in adipose tissue, that is restricted to adipocytes predicted systemic and tissue (adipose, liver, and muscle) insulin sensitivity, suggesting adipocyte CD36 protects against insulin resistance. Transcripts 1B and 1A, the major transcripts in skeletal muscle, correlated with FA disposal rate and triglyceride clearance, supporting importance of muscle CD36 in clearance of circulating FA. Additionally, the common CD36 single nucleotide polymorphism rs1761667 selectively influenced CD36 transcripts and exacerbated insulin resistance of glucose disposal by muscle.CONCLUSIONSAlternative CD36 transcripts differentially influence tissue CD36 and consequently FA homeostasis and insulin sensitivity. Adipocyte CD36 appears to be metabolically protective, and its selective upregulation might have therapeutic potential in insulin resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call