Abstract

Strategies aiming at minimization or elimination of systemic immunosuppression are key immediate goals for clinical expansion of vascularized composite allotransplantation (VCA). We compared the in vitro and in vivo immunomodulatory efficacy of adipose-derived mesenchymal stem cells (AD-MSCs) and bone marrow (BM)-derived MSCs in a rat VCA model. Both cell types were tested in vitro for suppressor function using mixed lymphocyte reactivity assays. AD-MSCs or BM-MSCs were administered intravenously (1 × 10 or 5 × 10 cells/animal) to Lewis rat recipients of mismatched Brown Norway hindlimb transplants. Short course tacrolimus (FK-506) monotherapy was withdrawn at postoperative day 21. In vivo regulatory T-cell induction, peripheral blood chimerism, and microchimerism in lymphatic organs were analyzed. AD-MSCs and BM-MSCs exhibited strong dose-dependent suppressor function in vitro, which was significantly more pronounced for AD cells. In vivo, all animals revealed peripheral multi-lineage chimerism at four weeks (P < 0.01) independent of cell type and dosage. Regulatory T-cell levels were increased with both cell types, the most in AD-MSC groups. These immunomodulatory effects were only transient. MSC treatment resulted in long-term (>120 day) allograft survival in 47% of the animals, which correlated with durable microchimerism in BM and spleen. AD-MSCs and BM-MSCs exert immunomodulatory effects that prolong survival of immunogenic skin-bearing VCA grafts with short course (21 day) tacrolimus induction therapy. The in vivo findings in terms of allograft survival did not reflect superior immunomodulatory characteristics of AD-MSCs found in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call