Abstract

BackgroundAdipoR2, which belongs to the seven-transmembrane-domain receptor family, has been shown to play an important role in the development of human tumours, but the underlying mechanisms are poorly understood. In this study, we found that AdipoR2 expression correlates with glioma grade. In addition, we also investigated the mechanisms behind the antiproliferative effects of AdipoR2 in U251 cells (a human glioma cell line) using colony formation and WST-8 growth assays.MethodsThe U251 cell line was cultured in vitro. Western blotting was used to detect the expression of relevant proteins. Quantitative RT-PCR was used to detect AdipoR1 and AdipoR2 expression. Flow cytometry was used to detect cell cycle assay results. The gene expression profiles of glioma samples from the CGGA database were analysed by MATLAB and GSEA software.ResultsThe AMPK/mTOR pathway plays a central role in the regulation of cell proliferation, differentiation and migration and may promote tumorigenesis. Therefore, we can control cancer progression by modulating the AMPK/mTOR pathway. However, there is no information on the relationship between AdipoR and AMPK/mTOR in central nervous system tumours such as GBM. In this study. We found 648 upregulated genes and 436 downregulated genes correlated with AdipoR2 expression in 158 glioma samples. GSEA suggested that AdipoR2 is a cell cycle-associated gene. The results of the flow cytometry analysis indicated that AdipoR2 induced G0/G1 cell cycle arrest in U251 cells. Furthermore, we identified the AMPK/mTOR signalling axis to be involved in AdipoR2-induced cell cycle arrest.ConclusionsOur results suggest that AdipoR2 may represent a novel endogenous negative regulator of GBM cell proliferation. These findings also suggest that AdipoR2 may be a promising therapeutic target in GBM patients.

Highlights

  • Glioblastoma (GBM) is a highly malignant and lethal cancer of the central nervous system

  • AdipoR2 expression was significantly lower in grades III–IV than in grade II (Fig. 1a), but no significant relationship was observed between AdipoR1 expression and glioma grade

  • The results indicated that patients with high AdipoR2 expression had a longer mean overall survival (OS) than patients with low AdipoR2 expression

Read more

Summary

Introduction

Glioblastoma (GBM) is a highly malignant and lethal cancer of the central nervous system. Most of the biological effects of Acrp are mediated by its receptors, AdipoR1 and AdipoR2, which belong to the seven-transmembrane-domain receptor family and have been shown to have abnormal expression in various types of human cancer [3,4,5]. The expression of AdipoR1 and AdipoR2 was previously observed in human cancer tissues, there are no clear indications about the presence of these receptors in human brain tumours. AdipoR2, which belongs to the seven-transmembrane-domain receptor family, has been shown to play an important role in the development of human tumours, but the underlying mechanisms are poorly under‐ stood. We investigated the mechanisms behind the antiproliferative effects of AdipoR2 in U251 cells (a human glioma cell line) using colony formation and WST-8 growth assays

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call