Abstract

Altered macrophage kinetics is a pivotal mechanism of visceral obesity-induced inflammation and cardiometabolic risk. Because monocytes can differentiate into either proatherogenic M1 macrophages or anti-inflammatory M2 macrophages, approaches that limit M1 while promoting M2 differentiation represent a unique therapeutic strategy. We hypothesized that adiponectin may prime human monocytes toward the M2 phenotype. Adiponectin promoted the alternative activation of human monocytes into anti-inflammatory M2 macrophages as opposed to the classically activated M1 phenotype. Adiponectin-treated cells displayed increased M2 markers, including the mannose receptor (MR) and alternative macrophage activation-associated CC chemokine-1. Incubation of M1 macrophages with adiponectin-treated M2-derived culture supernatant resulted in a pronounced inhibition of tumor necrosis factor-alpha and monocyte chemotactic protein-1 secretion. Activation of human monocytes into M2 macrophages by adiponectin was mediated, in addition to AMP-activated protein kinase and peroxisome proliferator-activated receptor (PPAR)-gamma, via PPAR-alpha. Furthermore, macrophages isolated from adiponectin knockout mice demonstrated diminished levels of M2 markers such as MR, which were restored with adiponectin treatment. We report a novel immunoregulatory mechanism through which adiponectin primes human monocyte differentiation into anti-inflammatory M2 macrophages. Conditions associated with low adiponectin levels, such as visceral obesity and insulin resistance, may promote atherosclerosis, in part through aberrant macrophage kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call