Abstract

Type 2 diabetes (T2D) is a widespread health condition both in the United States and around the world, with insulin resistance playing a critical role in its development. Effective treatment strategies are essential for managing T2D and mitigating associated risks. Adiponectin (APN), secreted by adipocytes, exhibits an inverse correlation with obesity-related adiposity, and its levels are negatively associated with insulin resistance and body mass index. This study aimed to enhance endogenous APN levels in a diet-induced obese (DIO) mouse model using lipid nanoparticles (LNP) as safe delivery agents for APN mRNA conjugates. The results indicate that APN-mRNA-LNP administration successfully induced APN synthesis in various tissues, including muscle, liver, kidney, pancreas, and adipose cells. This induction was associated with several positive outcomes, such as preventing diet-induced body weight gain, improving hyperglycemia by promoting Glut-4 expression, alleviating diabetic nephropathy symptoms by blocking the EGFR pathway, and reducing pro-inflammatory cytokine production. In addition, the treatment demonstrated enhanced insulin sensitivity by activating DGKd and inhibiting PKCĪµ. This resulted in reactivation of insulin receptors in insulin target tissues and stimulation of insulin secretion from pancreatic beta cells. The findings of the present study highlight the potential of APN-mRNA-LNP-based nucleic acid therapy as a treatment for type 2 diabetes, offering a comprehensive approach to addressing its complexities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.