Abstract

Articular adipose tissue is a ubiquitous component of human joints, and adiponectin is a protein hormone secreted predominantly by differentiated adipocytes and involved in energy homeostasis. The adiponectin is significantly higher in synovial fluid of patients with osteoarthritis and rheumatoid arthritis. Matrix metalloproteinases (MMP)-3 may contribute to the breakdown of articular cartilage during arthritis. We investigated the signaling pathway involved in MMP-3 caused by adiponectin in human chondrocytes. Adiponectin increased the secretion of MMP-3 in cultured human chondrocytes, as shown by qPCR, Western blot, and ELISA analysis. Adiponectin-mediated MMP-3 expression was attenuated by AdipoR1 but not AdipoR2 siRNA. Pretreatment with 5'-AMP-activated protein kinase (AMPK) inhibitor (araA and compound C), p38 inhibitor (SB203580), and NF-κB inhibitor (PDTC and TPCK) also inhibited the potentiating action of adiponectin. Activations of p38, AMPK, and NF-κB pathways after adiponectin treatment were demonstrated. Taken together, our results provide evidence that adiponectin acts through AdipoR1 to activate p38 and AMPK, resulting in the activations of NF-κB on the MMP-3 promoter and contribute cartilage destruction during arthritis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call