Abstract

To explore the role of the PPARα/HOXA10 signaling pathway in mediating the effect of adiponectin (APN) for improving endometrial receptivity in a rat model of polycystic ovary syndrome (PCOS). Forty female SD rat models with letrozole-induced PCOS were randomized, with 10 normal rats as the control, into 4 equal groups for treatment with APN alone, APN combined with GW6471 (a specific PPARα inhibitor) or the vehicle for 20 days, or no further treatment (PCOS model group). GW6471 treatment (daily dose of 1 mg/kg) and vehicle treatment were initiated on the 11th day following the start of APN treatment, all administered via intraperitoneal injection. The rats were observed for changes in estrous cycle, body weight, ovarian index and morphology, uterine index and morphology, serum hormone levels and lipid metabolism parameters. Endometrial expressions of PPARα and HOXA10 were detected with immunohistochemistry and Western blotting. The development of endometrial pinopodes was observed under electron microscope, and pregnancies of the rats were recorded. The rat models of PCOS exhibited obvious estrous cycle disorders with significantly prolonged estrous interval, increased body weight and ovarian index, decreased uterine index, disordered serum hormones and lipid metabolism (P < 0.05), and polycystic ovarian changes, and these changes were significantly improved by APN treatment. Endometrial expressions of PPARα and HOXA10 were significantly lowered in PCOS rats and effectively up-regulated after APN treatment, but GW6471 treatment obviously blocked the effect of APN (P < 0.05). APN showed strong protective effect against PCOS-induced impairment of endometrial pinopode development, and this effect was obviously attenuated by GW6471. APN also significantly increased the pregnancy rate and embryo number in PCOS rats, while GW6471 obviously reduced the embryo number and caused developmental retardation of the embryos. APN can improve endometrial receptivity in PCOS rats by upregulating the PARα/HOXA10 pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.