Abstract

Adiponectin (ADN) is a regulatory peptide secreted mostly by adipose tissue and acting via two receptors: AdipoR1 and AdipoR2. Our aim was to investigate expression of adiponectin system genes in the rat adrenal gland as well as its ontogenetic and physiological control. Furthermore, we examined the effects of acute and prolonged activation of HPA axis on ADN system in adipose tissue. By means of QPCR, ADN and AdipoR1 expression was demonstrated in rat adrenal cortex both at mRNA and protein levels, while AdipoR2 could only be detected at mRNA levels. ADN expression level was significantly upregulated in a developing and regenerating adrenal cortex. Globular domain of adiponectin at 10 −9 M stimulated corticosterone output and BrdU incorporation by cultured rat adrenocortical cells. Moreover, both acute (ACTH and ether stress) and prolonged (ACTH) adrenal stimulation resulted in lowered ADN levels, while expression of AdipoR1 and AdipoR2 was upregulated by the acute treatment. Depending on its site of origin, visceral (VAT) or subcutaneous (SAT) adipose tissue responded differently to alterations in HPA axis. VAT expression of ADN and its receptors remained almost unchanged by experimental manipulations. In SAT, on the other hand, expression of ADN and AdipoR2 was markedly increased by ACTH treatment and stress, while dexamethasone suppressed ADN and AdipoR1 mRNA levels. The results of this study provide new evidence for direct and indirect interactions between adipokines and HPA axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.