Abstract
Besides its role as an energy storage organ, adipose tissue can be viewed as a dynamic and complex endocrine organ, which produces and secretes several adipokines, including hormones, cytokines, extracellular matrix (ECM) proteins, and growth and vasoactive factors. A wide body of evidence showed that adipokines play a critical role in various biological and physiological functions, among which feeding modulation, inflammatory and immune function, glucose and lipid metabolism, and blood pressure control. The aim of this review is to summarize the effects of several adipokines, including leptin, diponectin, resistin, chemerin, lipocalin-2 (LCN2), vaspin, omentin, follistatin-like 1 (FSTL1), secreted protein acidic and rich in cysteine (SPARC), secreted frizzled-related protein 5 (SFRP5), C1q/TNF-related proteins (CTRPs), family with sequence similarity to 19 member A5 (FAM19A5), wingless-type inducible signaling pathway protein-1 (WISP1), progranulin (PGRN), nesfatin-1 (nesfatin), visfatin/PBEF/NAMPT, apelin, retinol binding protein 4 (RPB4), and plasminogen activator inhibitor-1 (PAI-1) in the regulation of insulin resistance and vascular function, as well as many aspects of inflammation and immunity and their potential role in managing obesity-associated diseases, including metabolic, osteoarticular, and cardiovascular diseases.
Highlights
Adipose tissue is currently considered as an endocrine organ, a complex structure involved in fat storage and in releasing several bioactive polypeptides, collectively named “adipokines” (Kershaw and Flier, 2004; Galic et al, 2010)
These adipose tissue derived factors could be critically involved in the development of insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease associated with obesity, as reviewed by various authors (Antuna-Puente et al, 2008; Cao, 2014; Nakamura et al, 2014)
These adipokines can be produced by synoviocytes, osteoclasts, osteoblasts, chondrocytes, and inflammatory cells which have migrated in the joint microenvironment, and show potent immunomodulatory activities in rheumatic disease, such as in osteoarthritis (OA) and rheumatoid arthritis (RA) (Carrión et al, 2019; Xie and Chen, 2019)
Summary
Adipose tissue is currently considered as an endocrine organ, a complex structure involved in fat storage and in releasing several bioactive polypeptides, collectively named “adipokines” (Kershaw and Flier, 2004; Galic et al, 2010). It has been demonstrated that local pro-inflammatory signaling in BAT could repress the thermogenic function thereby impairing diet-induced thermogenesis (Villarroya et al, 2018) All together, these adipose tissue derived factors could be critically involved in the development of insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease associated with obesity, as reviewed by various authors (Antuna-Puente et al, 2008; Cao, 2014; Nakamura et al, 2014). Other adipokines such as chemerin, lipocalin (LCN2), vaspin, and omentin-1 have been described as signal molecules involved in neuroendocrine-immune interactions (Carrión et al, 2019; Xie and Chen, 2019) Besides adipose tissue, these adipokines can be produced by synoviocytes, osteoclasts, osteoblasts, chondrocytes, and inflammatory cells which have migrated in the joint microenvironment, and show potent immunomodulatory activities in rheumatic disease, such as in osteoarthritis (OA) and rheumatoid arthritis (RA) (Carrión et al, 2019; Xie and Chen, 2019). We aimed to summarize the effects of adipokines in the regulation of insulin resistance and vascular function, as well as inflammation and immunity and their potential role in managing obesity-associated diseases, including metabolic, rheumatic, and cardiovascular disorders (Table 1)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.