Abstract

Under conditions of nutritional and environmental stress, organismal homeostasis is preserved through inter-communication between multiple organs. To do so, higher organisms have developed a system of interorgan communication through which one tissue can affect the metabolism, activity or fate of remote organs, tissues or cells. In this review, we discuss the latest findings emphasizing Drosophila melanogaster as a powerful model organism to study these interactions and may constitute one of the best documented examples depicting the long-distance communication between organs. In flies, the adipose tissue appears to be one of the main organizing centers for the regulation of insect development and behavior: it senses nutritional and hormonal signals and in turn, orchestrates the release of appropriate adipokines. We discuss the nature and the role of recently uncovered adipokines, their regulations by external cues, their secretory routes and their modes of action to adjust developmental growth and timing accordingly. These findings have the potential for identification of candidate factors and signaling pathways that mediate conserved interorgan crosstalk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call