Abstract

To determine whether adipocyte differentiation-related protein (ADRP), a lipid droplet-associated protein that binds to and sequesters intracellular fatty acids, is 1) expressed in human skeletal muscle and 2) differentially regulated in human skeletal muscle obtained from obese non-diabetic (OND) and obese diabetic (OD) subjects. Ten OND subjects and 15 OD subjects underwent a weight loss or pharmacological intervention program to improve insulin sensitivity. Anthropometric data, hemoglobin A(1C), fasting glucose, lipids, and glucose disposal rate were determined at baseline and at completion of studies. Biopsies of the vastus lateralis muscle (SkM) were obtained in the fasting state from OND and OD subjects. Protein expression was determined by Western blotting. ADRP was highly expressed in SkM from OND (4.4 +/- 1.54 AU/10 microg, protein, n = 10) and OD (5.02 +/- 1.33 AU/10 microg, n = 12) subjects. OND subjects undergoing weight loss had decreased triglyceride levels and improved insulin action. SkM ADRP content increased with weight loss from 5.14 +/- 2.15 AU/10 microg to 9.92 +/- 1.57 AU/10 microg (p < 0.025). OD subjects were treated with either troglitazone or metformin, together with glyburide, for 3 to 4 months. Both treatments attained similar levels of glycemic control. OD subjects with lower baseline ADRP content (2.85 +/- 1.07 AU/10 microg, n = 6) displayed up-regulation of ADRP expression (to 9.27 +/- 2.76 AU/10 microg, p < 0.025). ADRP is the predominant lipid droplet-associated protein in SkM, and low ADRP expression is up-regulated in circumstances of improved glucose tolerance. Up-regulation of ADRP may act to sequester fatty acids as triglycerides in discrete lipid droplets that could protect muscle from the detrimental effects of fatty acids on insulin action and glucose tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.