Abstract

This paper presents an assessment of gamma radiation performance, specifically in terms of attenuation energy, of concrete containing coarse aggregate having different physical and chemical properties. Basalt being heavier and somehow having high specific gravity is likely to have a good performance against gamma radiation. Through this paper, the author has made a comparison between the concrete having different coarse aggregates, normal aggregate phase and basaltic aggregate phase by evaluating the attenuation energies of both the phases at the Institute of Radiotherapy and Nuclear Medicine (IRNUM) Peshawar. Also, the water to cement ratio (W/C) for both the phases was distinguished i.e. 3.5 and 5.7 to make the results more promising and enabling to make the comparison effective. The test was likely to be conducted on Molds having 10 cm by 10 cm cross-section of each W/C ratio with varying thickness of about 2cm and will lead up to 10cm. The detecting device used was a phoenix teletherapy machine operating with a former type ionization chamber having an energy of 1.25 MeV. The source of radiation was Cobalt 60. The results indicated that basalt despite having strong physical properties is insufficient to be used for Gamma shielding. The two materials vary very little, so it is negligible to be used for a specific reason.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.