Abstract

The ability to generate and tune quantized persistent supercurrents is crucial for building superconducting or atomtronic devices with novel functionalities. In ultracold atoms, previous methods for generating quantized supercurrents are generally based on dynamical processes to prepare atoms in metastable excited states. Here we show that arbitrary quantized circulation states can be adiabatically prepared and tuned as the ground state of a ring-shaped Bose-Einstein condensate by utilizing spin-orbital-angular-momentum (SOAM) coupling and an external potential. There exists superfluid hysteresis for tuning supercurrents between different quantization values with nonlinear atomic interactions, which is explained by developing a nonlinear Landau-Zener theory. Our work will provide a powerful platform for studying SOAM coupled ultracold atomic gases and building novel atomtronic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.