Abstract

R1ρ (or spin-lock) imaging is prone to artifacts arising from field inhomogeneities that may impact the R1ρ quantification. Previous research has proposed two types of method to manage the artifacts in continuous-wave constant amplitude spin-lock, one is based on the composite block pulses to compensate for the field imperfections, another category uses adiabatic pulses in the R1ρ pre-pulse to excite and reverse the magnetization (named adiabatic prepared approach). Although both methods have proved their efficiency in alleviating artifacts, we observed that the adiabatic pulse approach could produce much lower R1ρ dispersion in human knee cartilage than the block pulse method (characterized by the R1ρ difference ∆R1ρ =11.4 Hz (from spin-lock field 50 to 500 Hz) for the block pulse method vs. ∆R1ρ =4.5 Hz for the adiabatic pulse approach). Prompted by this observation, the purpose of this study was to investigate the underlying factors that may affect the R1ρ dispersion through numerical simulations based on the two-pool exchanging Bloch-McConnell equations. The effects of free water pool size Pa (from 0.80 to 0.95), chemical exchange rate kb (from the bound to free water pool, ranged from 500 to 3,000 Hz), adiabatic pulse duration Tp (from 5.0 to 25 ms), and the chemical shift of the bound pool ppmb (from 1.0 to 5.0 ppm) were examined on the degree of the R1ρ dispersion for the two R1ρ imaging methods. In general, the greater the ppmb, kb, Tp, and the smaller Pa, the more significant difference in R1ρ dispersion between the block and adiabatic approaches, with the dispersion curve of the adiabatic method becoming flatter. The adiabatic prepared approach may compromise the R1ρ dispersion, the effect is determined by the combination of the tissue and radiofrequency (RF) pulse properties. It is suggested that care should be taken when using the adiabatically prepared approach to study R1ρ dispersion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.