Abstract
We study the adiabatic tunneling of Bose—Einstein condensates in a symmetric double-well potential when the interaction strength between the atoms is modulated linearly or in a cosine periodic form. It is shown that the system evolves along a nonlinear eigenstate path. In the case of linear modulation under the adiabatic approximation conditions, the tunneling probability of the condensate atoms to the other potential well is half. However, when the system is periodically scanned in the adiabatic process, we find an interesting phenomenon. A small change in the cycle period can lead to the condensate atoms returning to the right well or tunneling to the left well. The system comes from a linear eigenstate back to a nonlinear one, which is completely different from the linear eigenstate evolution. We explain the results by using the energy level and the phase diagram.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.