Abstract

In this paper, we develop an adiabatic theory for the evolution of large closed surfaces under the area-constrained Willmore (ACW) flow in a three-dimensional asymptotically Schwarzschild manifold. We explicitly construct a map, defined on a certain four-dimensional manifold of barycenters, which characterizes key static and dynamical properties of the ACW flow. In particular, using this map, we find an explicit four-dimensional effective dynamics of barycenters, which serves as a uniform asymptotic approximation for the (infinite-dimensional) ACW flow, so long as the initial surface satisfies certain mild geometric constraints (which determine the validity interval). Conversely, given any prescribed flow of barycenters evolving according to this effective dynamics, we construct a family of surfaces evolving by the ACW flow, whose barycenters are uniformly close to the prescribed ones on a large time interval (whose size depends on the geometric constraints of initial configurations).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call