Abstract

In two-step solidification of alloys that form a metastable phase, the first stage of microstructural evolution following solidification of the primary (metastable) phase involves growth of the stable phase into the mushy-zone. The growth rate of the stable phase can be predicted using a simple dendrite growth model if the heat balance is modified to include isothermal melting of the pre-existing solid. This adiabatic remelting model successfully predicts the growth rates for the stable phase as measured experimentally in the Fe–Cr–Ni alloy system. The growth rate of the stable phase depends strongly on composition, but this dependence is countered by a reduction in the heat absorbed through melting of the metastable solid. Due to the small variation in thermophysical properties over a wide range of compositions, the net result of these two competing effects is a heat flux, which is proportional to the thermodynamic driving force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.