Abstract

Adiabatic quantum computing (AQC) started as an approach to solving optimization problems, and has evolved into an important universal alternative to the standard circuit model of quantum computing, with deep connections to both classical and quantum complexity theory and condensed matter physics. In this review we give an account of most of the major theoretical developments in the field, while focusing on the closed-system setting. The review is organized around a series of topics that are essential to an understanding of the underlying principles of AQC, its algorithmic accomplishments and limitations, and its scope in the more general setting of computational complexity theory. We present several variants of the adiabatic theorem, the cornerstone of AQC, and we give examples of explicit AQC algorithms that exhibit a quantum speedup. We give an overview of several proofs of the universality of AQC and related Hamiltonian quantum complexity theory. We finally devote considerable space to Stoquastic AQC, the setting of most AQC work to date, where we discuss obstructions to success and their possible resolutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.