Abstract

A dc current can be pumped through an interacting system by periodically varying two independent parameters such as the magnetic field and a gate potential. We present a general expression for the adiabatic pumping current in interacting systems, written in terms of instantaneous properties of the system at equilibrium, and find the limits of its applicability. This expression generalizes the scattering approach for noninteracting particles. We apply our formula for a quantum critical system that exhibits the two-channel Kondo effect, where single particle excitations are not well defined. We find that if the quantum critical point is contained in the pumping trajectory, the pumped spin between the channels approaches h, and if it is not contained in the trajectory, the spin approaches zero when the temperature T --> 0. We discuss the non-Fermi liquid features of this system at finite T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call