Abstract

We study adiabatic pumping through a double quantum dot coupled to normal and superconducting leads. For this purpose a perturbation expansion in the tunnel coupling between the dots and the normal leads is performed and processes underlying the pumping current are discussed. Features of crossed Andreev reflection are investigated in the average pumped charge and related to local Andreev reflection in a single quantum dot. In order to distinguish Cooper-pair splitting from quasiparticle pumping, we compare the properties of Cooper-pair pumping with single-electron pumping in a system with only normal leads. The dependence on the average dot level and the coupling asymmetry turn out to be the main distinguishing features. This is contrasted with the linear conductance for which it is more difficult to distinguish single-particle from Cooper-pair transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.