Abstract

Third order virial equations have been used to investigate the oscillations and the stability of the sequence of differentially rotating, compressible Maclaurin spheroids in the presence of toroidal magnetic fields. It is shown that the neutral point occurring at eccentricitye=0.731 13, which is the analogue of the first point of bifurcation along the Dedekind sequence, remains unaffected by the presence of differential rotation or a toroidal magnetic field. The point of onset of dynamical instability corresponding to the third harmonic deformations does, however, depend upon the magnetic field. It is shifted to values higher thane=0.966 96, the value that obtains in the case of uniform rotation; and a sufficiently large magnetic field can suppress this point. Complete frequency spectra (‘Kelvin’ modes belonging to the harmonicsl=3 and compressible modes belonging tol=1) are obtained in two cases of interest: when the equilibrium state is one of equipartition, and when toroidal magnetic and velocity fields (vanishing at the surface) are present in a configuration rotating with a constant angular velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.