Abstract

Euclidean time projection is a powerful tool that uses exponential decay to extract the low-energy information of quantum systems. The adiabatic projection method, which is based on Euclidean time projection, is a procedure for studying scattering and reactions on the lattice. The method constructs the adiabatic Hamiltonian that gives the low-lying energies and wave functions of two-cluster systems. In this paper we seek the answer to the question whether an adiabatic Hamiltonian constructed in a smaller subspace of the two-cluster state space can still provide information on the low-lying spectrum and the corresponding wave functions. We present the results from our investigations on constructing the adiabatic Hamiltonian using Euclidean time projection and extracting details of the low-energy spectrum and wave functions by diagonalizing it. In our analyses we consider systems of fermion-fermion and fermion-dimer interacting via a zero-range attractive potential in one dimension, and fermion-fermion interacting via an attractive Gaussian potential in three dimensions. The results presented here provide a guide for improving the adiabatic projection method and for reducing the computational costs of large-scale calculations of \emph{ab initio} nuclear scattering and reactions using Monte Carlo methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.