Abstract

An adiabatic multi-echo spectroscopic imaging (AMESING) sequence, used for (31) P MRSI, with spherical k-space sampling and compensated phase-encoding gradients, was implemented on a whole-body 7-T MR system. One free induction decay (FID) and up to five symmetric echoes can be acquired with this sequence. In tissues with low T2 and high T2 , this can theoretically lead to a potential maximum signal-to-noise ratio (SNR) increase of almost a factor of three, compared with a conventional FID acquisition with Ernst-angle excitation. However, with T2 values being, in practice, ≤400 ms, a maximum enhancement of approximately two compared with low flip Ernst-angle excitation should be feasible. The multi-echo sequence enables the determination of localized T2 values, and was validated with (31) P three-dimensional MRSI on the calf muscle and breast of a healthy volunteer, and subsequently applied in a patient with breast cancer. The T2 values of phosphocreatine, phosphodiesters (PDE) and inorganic phosphate in calf muscle were 193 ± 5 ms, 375 ± 44 ms and 96 ± 10 ms, respectively, and the apparent T2 value of γ-ATP was 25 ± 6 ms. A T2 value of 136 ± 15 ms for inorganic phosphate was measured in glandular breast tissue of a healthy volunteer. The T2 values of phosphomonoesters (PME) and PDE in breast cancer tissue (ductulolobular carcinoma) ranged between 170 and 210 ms, and the PME to PDE ratios were calculated to be phosphoethanolamine/glycerophosphoethanolamine = 2.7, phosphocholine/glycerophosphocholine = 1.8 and PME/PDE = 2.3. Considering the relatively short T2 values of the metabolites in breast tissue at 7 T, the echo spacing can be short without compromising spectral resolution, whilst maximizing the sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call