Abstract

The Coulomb three-body problem in Jacobi coordinates was solved by treating the distance of the particles having equal charge as a parameter. This method allows computation of electronic energies with finite nuclear masses while maintaining the notion of a potential energy curve. The rotationless ground-state electronic and the so-called adiabatic Jacobi correction (AJC) energies are presented for H2+, D2+, and HD+ at fixed internuclear separations. The AJCs are defined as the difference between the results obtained from calculations using proper finite and infinite nuclear masses. Except at the united atom limit, the AJCs are smaller than the traditional first-order diagonal Born-Oppenheimer corrections. Expectation values of proton-electron, p-e, and deuteron-electron, d-e, distances for HD+ have been computed as a function of internuclear separation. Similarly to the fully nonadiabatic approach, the present method is able to follow the symmetry breaking in HD+. Exact and approximate analytical and numerical results are given for counterfactual systems as well. In these cases changes are allowed for the values of the electron rest mass or the elementary charge, as well as for the mass or charge of the unique particle (electron).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.