Abstract

The numerical solution of the problem of guided propagation of polarized light in a smooth junction of a planar waveguide is considered. Within the framework of the model of adiabatic guided modes, the system of Maxwell equations is reduced to a system of four ordinary differential equations and two algebraic equations for six components of the electromagnetic field in the zeroth approximation and the same number of equations in the first approximation. The multilayer structure of waveguides makes it possible to reduce the problem to a homogeneous system of linear algebraic equations, whose nontrivial solvability condition yields the dispersion equation. Auxiliary eigenvalue problems for describing the adiabatic modes of the waveguide are solved. Keywords: smoothly irregular integrated-optical multilayer waveguides, eigenvalue and eigenvector problems, single-mode propagation of adiabatic waveguide modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.