Abstract

We consider the 1d interacting Bose gas in the presence of time-dependent and spatially inhomogeneous contact interactions. Within its attractive phase, the gas allows for bound states of an arbitrary number of particles, which are eventually populated if the system is dynamically driven from the repulsive to the attractive regime. Building on the framework of Generalized Hydrodynamics, we analytically determine the formation of bound states in the limit of adiabatic changes in the interactions. Our results are valid for arbitrary initial thermal states and, more generally, Generalized Gibbs Ensembles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call