Abstract

Abstract Film cooling on airfoils is a crucial cooling method as the gas turbine industry seeks higher turbine inlet temperatures. Shaped film cooling holes are widely used in many designs given the improved performance over that of cylindrical holes. Although there have been numerous studies of shaped holes, there is no established baseline shaped hole to which new cooling hole designs can be compared. The goal of this study is to offer the community a shaped hole design, representative of proprietary and open literature holes that serves as a baseline for comparison purposes. The baseline shaped cooling hole design includes the following features: hole inclination angle of 30 deg with a 7 deg expansion in the forward and lateral directions; hole length of 6 diameters; hole exit-to-inlet area ratio of 2.5; and lateral hole spacing of 6 diameters. Adiabatic effectiveness was measured with this newly shaped hole and found to peak near a blowing ratio of 1.5 at density ratios of 1.2 and 1.5, at both low freestream turbulence and moderate freestream turbulence of 5%. Reductions in area-averaged effectiveness due to freestream turbulence at low blowing ratios were as high as 10%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call