Abstract
Using a second-order approximation to Random Phase Approximation renormalized (RPAr) many-body perturbation theory for the interacting density-density response function, we have developed a so-called higher-order terms (HOT) approximation for the correlation energy. In combination with the first-order RPAr correction, our new method faithfully captures the infinite-order correlation for a given exchange-correlation kernel, yielding errors of the total correlation energy on the order of 1% or less for most systems. For exchange-like kernels, our new method has the further benefit that the coupling-strength integration can be completely eliminated resulting in a modest reduction in computational cost compared to the traditional approach. When the correlation energy is accurately reproduced by the HOT approximation, structural properties and energy differences are also accurately reproduced, as we demonstrate for several periodic solids and some molecular systems. Energy differences involving fragmentation are challenging for the HOT method, however, due to errors that may not cancel between a composite system and its constituent pieces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.