Abstract

By analogy to heteronuclear systems, it is shown that coherence can be transferred adiabatically in the rotating frame between two selected spins I and S belonging to a homonuclear network of scalar-coupled spins. In contrast to cross polarization with constant radiofrequency field amplitudes, the transfer function obtained with adiabatic methods depends in a monotonic, nonoscillatory manner on the duration of the transfer interval. The efficiency of the transfer does not depend on the magnitude of the scalar coupling constant J IS, although it can be affected by relaxation and by couplings J IR and J SR to further spins R. Three methods are investigated: (i) adiabatic demagnetization of spin I in the rotating frame followed by observation of the resulting J-ordered state, (ii) adiabatic demagnetization of spin I in the rotating frame followed by adiabatic remagnetization of spin S, and (iii) adiabatic transfer where spins I and S are subjected simultaneously to time-dependent spin-locking fields. In all three cases, the optimum shape of the time dependence of the radiofrequency field amplitudes is discussed, with the help of a geometric interpretation of cross polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.